This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

New Aspects of the Syntheses and Molecular Structures of Me₂SbSeSbMe₂ and Related Compounds

Arne Haaland; Dmitry J. Shorokhov; Vasili I. Sokolov; Hans Vidar Volden; Hans J. Breunig; Michael Denker; Roland Rösler

To cite this Article Haaland, Arne, Shorokhov, Dmitry J., Sokolov, Vasili I., Volden, Hans Vidar, Breunig, Hans J., Denker, Michael and Rösler, Roland(1998) 'New Aspects of the Syntheses and Molecular Structures of Me₂SbSeSbMe₂ and Related Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 136: 1, 463 — 466

To link to this Article: DOI: 10.1080/10426509808545973

URL: http://dx.doi.org/10.1080/10426509808545973

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Contributed Papers

Phosphorus Sulphur and Silicon
Vols. 136, 137 & 138 pp. 463–466
Reprints available directly from the publisher
Photocopying permitted by license only

© 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint Printed in Malaysia

NEW ASPECTS OF THE SYNTHESES AND MOLECULAR STRUCTURES OF Me₂SbSeSbMe₂ AND RELATED COMPOUNDS

ARNE HAALAND^a, DMITRY J. SHOROKHOV^a, VASILI I. SOKOLOV^a, HANS VIDAR VOLDEN^a, HANS J. <u>BREUNIG</u>^b, MICHAEL DENKER^b, and ROLAND RÖSLER^b, ^aDepartment of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway; ^bUniversität Bremen, Fb 2, D-28334 Bremen, Germany

The structures of bis(dimethylstibyl)chalcogenides have been studied by density functional theory calculations and gas electron diffraction.

Keywords: Organoantimony compounds, gas electron diffraction

INTRODUCTION

The observation of unusual colour changes^[1] of some members of the series $Me_2SbESbMe_2$ (E = O, S, Se, Te) has prompted us to study the molecular structures using Density Functional Theory (DFT) calculations and Gas Electron Diffraction (GED).

Synthesis

The synthesis of (Me₂Sb)₂O (colourless, ugly smelling liquid, b.p.₍₅₎ 57.5-58.5 °C, yield 60 %, ¹H-NMR (C₆D₆) 0.840 ppm, MS (EI) m/z

320 (55%) M⁺), was carried out by alkaline hydrolysis of Me₂SbBr¹². The crude product contained 18 % Me₃Sb. It was distilled three times to reach a purity of 99 %. The reaction of Me₂SbSbMe₂ with elemental sulphur^[3] selenium^[4], or tellurium^[4], resulted in the formation of (Me₂Sb)₂E (E = S, Se, Te). Novel aspects of the preparative chemistry are the findings that Me₂SbSeSbMe₂ reacts with additional selenium until the stoichiometry of a diselenide Me₂SbSeSeSbMe₂ is reached. Me₂SbTeSbMe₂ is purified by distillation (b.p._(0.0045) 74-78 °C).

DFT and GED study of $(Me_2Sb)_2E$ (E = O, S, Se, Te)

Results of DFT calculations of (Me₂Sb)₂E (E = O, S, Se) and GED data of (Me₂Sb)₂E (E = O, Se) have recently been published^[5]. The GED data of (Me₂Sb)₂S were recorded on the Baltzers KDG2 unit at the University of Oslo with a metal inlet system at 94-98°C. Exposures were made with nozzle-to-plate distances of 25 cm (3 plates) and 50 cm (6 plates). Backgrounds were drawn as least-squares adjusted polynomials to the difference between the total experimental and the calculated molecular intensities. The structure refinements were based on a mixture of the *syn-syn* (C₂) and the *syn-anti* conformer (C_{2v}). All the SbCH₃ fragments had local C_{3v} symmetry. One C-H bond in each fragment was fixed in *anti* position to Sb-S. The structure of the *syn-syn* conformer is then determined by eight independent parameters (bond distances S-Sb, Sb-C, C-H; interatomic distance Sb···Sb, valence angles <SSbC, <CSbC, <SbCH;

torsion angle <SbSSblp, where lp is the lone electron pair of the antimony atom). The difference between Sb···Sb distances of syn-anti and syn-syn conformer was fixed at the DTF calculated value. Other structure parameters of syn-anti were assumed equal to that of syn-syn. Eight independent structure parameters, seven root-mean-square vibrational amplitudes and the mole fraction were refined. The estimated standard deviations were doubled to include uncertainty due to the data correlation and expanded to include a scale uncertainty of 0.1 %. R-factors obtained: 3.9% (50 cm), 16.5% (25 cm), 5.5 % (total).

Structural parameters of (Me₂Sb)₂S and other bis(dimethylantimony) chalcogenides including preliminary data of the tellurium derivative are given in Table I.

TABLE I. Distances [pm] and angles [°] in the structures of $(Me_2Sb)_2E$ (E = O, S, Se, Te)

		syn-syn		syn-anti	
E atom	Sb-E	SbSb	<sbesb< th=""><th>SbSb</th><th><sbxsb< th=""></sbxsb<></th></sbesb<>	SbSb	<sbxsb< th=""></sbxsb<>
0	198	346	122	360	131
S	241	366	99	382	105
Se	255	380	96	396	102
Те	278	396	91	412	96

Summary

DFT calculations on (Me₂Sb)₂E (E = O, S, Se, Te) indicate that the equilibrium structures are *syn-syn* or near *syn-syn* conformers. The barriers restricting rotation about Sb-E bonds are very low, the equilibrium values for the dihedral angles φ(Sb-E-Sb-lp) (lp = direction of a lone pair at Sb) are probably less than 45°. The calculations further indicate the existence of *syn-anti*-conformers some 4 kJ·mol⁻¹ above the more stable *syn-syn* conformer. GED data show that both conformers are present in gaseous (Me₂Sb)₂O and (Me₂Sb)₂S, while the presence of the *syn-anti* conformer in gaseous (Me₂Sb)₂Se or (Me₂Sb)₂Te is uncertain. The Sb-O-Sb angle is wide compared to the Sb-Se-Sb or Sb-Te-Sb bond angle. It is suggested that the intramolecular repulsion between the antimony atoms is responsible for the wide angle of the oxo derivative.

References

- [1.] H. J. Breunig, in *The Chemistry of As, Sb, and Bi*, edited by S. Patai (Wiley, New York, 1994), Chap 10, p. 441.
- [2.] G.T. Morgan, G.R.Davies, Proc. Roy. Soc. Ser. A, 110, 523 (1926).
- [3.] H. J. Breunig, H. Jawad, Z. Naturforsch., 37b, 1104 (1982).
- [4.] H. J. Breunig, H. Jawad, J. Organometal. Chem., 277, 257. (1984).
- [5.] A. Haaland, V. I. Sokolov, H. V. Volden, H. J. Breunig, M. Denker, R. Rösler, Z. Naturforsch., 52b, 296 (1997).